EconPapers    
Economics at your fingertips  
 

Solving DEA models in a single optimization stage: Can the non-Archimedean infinitesimal be replaced by a small finite epsilon?

Victor V. Podinovski and Tatiana Bouzdine-Chameeva

European Journal of Operational Research, 2017, vol. 257, issue 2, 412-419

Abstract: Single-stage DEA models aim to assess the input or output radial efficiency of a decision making unit and potential mix inefficiency in a single optimization stage. This is achieved by incorporating the sum of input and output slacks, multiplied by a small (theoretically non-Archimedean infinitesimal) value epsilon in the envelopment model or, equivalently, by using this value as the lower bound on the input and output weights in the dual multiplier model. When this approach is used, it is common practice to select a very small value for epsilon. This is based on the expectation that, for a sufficiently small epsilon, the radial efficiency and optimal slacks obtained by solving the single-stage model should be approximately equal to their true values obtained by the two separate optimization stages. However, as well-known, selecting a small epsilon may lead to significant computational inaccuracies. In this paper we prove that there exists a threshold value, referred to as the effective bound, such that, if epsilon is smaller than this bound, the solution to the single-stage program is not approximate but precise (exactly the same as in the two-stage approach), provided there are no computational errors.

Keywords: Data envelopment analysis; Single-stage optimization; Effective bound (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716307585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:2:p:412-419

DOI: 10.1016/j.ejor.2016.09.022

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:412-419