Two new stochastic models of the failure process of a series system
Shaomin Wu and
Philip Scarf
European Journal of Operational Research, 2017, vol. 257, issue 3, 763-772
Abstract:
Consider a series system consisting of sockets into each of which a component is inserted: if a component fails, it is replaced with a new identical one immediately and system operation resumes. An interesting question is: how to model the failure process of the system as a whole when the lifetime distribution of each component is unknown? This paper attempts to answer this question by developing two new models, for the cases of a specified and an unspecified number of sockets, respectively. It introduces the concept of a virtual component, which corresponds to the part of the system that is replaced upon system failure. It then discusses the probabilistic properties of the models and methods for parameter estimation. Based on six datasets of artificially generated system failures and a real-world dataset, the paper compares the performance of the proposed models with four other commonly used models: the renewal process, the geometric process, Kijima’s generalised renewal process, and the power law process. The results show that the proposed models outperform these comparators on the datasets, based on the Akaike information criterion.
Keywords: Non-homogeneous Poisson process (NHPP); Geometric process (GP); Generalised renewal process (GRP); Superimposed renewal process; Virtual component (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716306075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:3:p:763-772
DOI: 10.1016/j.ejor.2016.07.052
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().