Optimal replenishment under price uncertainty
Esther Mohr
European Journal of Operational Research, 2017, vol. 258, issue 1, 136-143
Abstract:
We aim to find optimal replenishment decisions without having the entire price information available at the outset. Although it exists, the underlying price distribution is neither known nor given as part of the input. Under the competitive ratio optimality criterion, we design and analyze online algorithms for two related problems. Besides the reservation price based decision how much to buy we additionally consider the optimal scheduling of orders. We suggest an online algorithm that decides how much to buy at the optimal point in time and experimentally explore its decision making. Results show that the problem of finding a replenishment strategy with best possible worst-case performance guarantees can be considered as an extension of the online time series search problem.
Keywords: Inventory; Online algorithms; Minimax regret; Competitive ratio; Optimal search (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716306269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:1:p:136-143
DOI: 10.1016/j.ejor.2016.08.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().