A new algorithm for solving planar multiobjective location problems involving the Manhattan norm
Shaghaf Alzorba,
Christian Günther,
Nicolae Popovici and
Christiane Tammer
European Journal of Operational Research, 2017, vol. 258, issue 1, 35-46
Abstract:
This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. We characterize the nonessential objectives and, by eliminating them, we develop an effective algorithm for generating the whole set of efficient solutions as the union of a special family of rectangles and line segments. We prove the correctness of this algorithm, analyze its complexity, and present illustrative computational results obtained by a MATLAB-based implementation.
Keywords: Multiple objective programming; Location problem; Manhattan norm; Scalarization; Nonessential objective (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716308797
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:1:p:35-46
DOI: 10.1016/j.ejor.2016.10.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().