Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets
André Chassein and
Marc Goerigk
European Journal of Operational Research, 2017, vol. 258, issue 1, 58-69
Abstract:
We consider robust counterparts of uncertain combinatorial optimization problems, where the difference to the best possible solution over all scenarios is to be minimized. Such minmax regret problems are typically harder to solve than their nominal, non-robust counterparts. While current literature almost exclusively focuses on simple uncertainty sets that are either finite or hyperboxes, we consider problems with more flexible and realistic ellipsoidal uncertainty sets. We present complexity results for the unconstrained combinatorial optimization problem, the shortest path problem, and the minimum spanning tree problem. To solve such problems, two types of cuts are introduced, and compared in a computational experiment.
Keywords: Robust optimization; Minmax regret; Ellipsoidal uncertainty; Complexity; Scenario relaxation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716309055
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:1:p:58-69
DOI: 10.1016/j.ejor.2016.10.055
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().