Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics
Alessandra Menafoglio and
Piercesare Secchi
European Journal of Operational Research, 2017, vol. 258, issue 2, 401-410
Abstract:
We review recent advances in Object Oriented Spatial Statistics, a system of ideas, algorithms and methods that allows the analysis of high dimensional and complex data when their spatial dependence is an important issue. At the intersection of different disciplines – including mathematics, statistics, computer science and engineering – Object Oriented Spatial Statistics provides the right perspective to address key problems in varied contexts, from Earth and life sciences to urban planning. We illustrate a few paradigmatic methods applied to problems of prediction, classification and smoothing, giving emphasis to the key ideas Object Oriented Spatial Statistics relies upon.
Keywords: Object oriented data analysis; Kriging for object data; Bagging Voronoi algorithm; Spatial regression models with differential regularization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171630813X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:2:p:401-410
DOI: 10.1016/j.ejor.2016.09.061
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().