A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems
Unai Aldasoro,
Laureano F. Escudero,
María Merino and
Gloria Pérez
European Journal of Operational Research, 2017, vol. 258, issue 2, 590-606
Abstract:
A parallel matheuristic algorithm is presented as a spin-off from the exact Branch-and-Fix Coordination (BFC) algorithm for solving multistage stochastic mixed 0–1 problems. Some steps to guarantee the solution’s optimality are relaxed in the BFC algorithm, such that an incomplete backward branching scheme is considered for solving large sized problems. Additionally, a new branching criterion is considered, based on dynamically-guided and stage-wise ordering schemes, such that fewer Twin Node Families are expected to be visited during the execution of the so-called H-DBFC algorithm. The inner parallelization IH-DBFC of the new approach, allows to solve in parallel scenario clusters MIP submodels at different steps of the algorithm. The outer parallel version, OH-DBFC, considers independent paths and allows iterative incumbent solution values exchanges to obtain tighter bounds of the solution value of the original problem. A broad computational experience is reported for assessing the quality of the matheuristic solution for large sized instances. The instances dimensions that are considered are up to two orders of magnitude larger than in some other works that we are aware of. The optimality gap of the H-DBFC solution value versus the one obtained by a state-of-the-art MIP solver is very small, if any. The new approach frequently outperforms it in terms of solution’s quality and computing time. A comparison with our Stochastic Dynamic Programming algorithm is also reported. The use of parallel computing provides, on one hand, a perspective for solving very large sized instances and, on the other hand, an expected large reduction in elapsed time.
Keywords: Multistage stochastic mixed 0–1 Optimization; Matheuristic; Branch-and-Fix Coordination; Break stage scenario clustering; Parallel computing; Message-passing interface (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716307111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:2:p:590-606
DOI: 10.1016/j.ejor.2016.08.072
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().