Microfoundations for stochastic frontiers
Mike Tsionas
European Journal of Operational Research, 2017, vol. 258, issue 3, 1165-1170
Abstract:
The purpose of the paper is to propose microfoundations for stochastic frontier models. Previous work shows that a simple Bayesian learning model supports gamma distributions for technical inefficiency in stochastic frontier models. The conclusion depends on how the problem is formulated and what assumptions are made about the sampling process and the prior. After the new formulation of the problem it turns out that the distribution of the one-sided error component does not belong to a known family. Moreover, we find that without specifying a utility function or even the cost inefficiency function, the relative effectiveness of managerial input can be determined using only cost data and estimates of the returns to scale. The point of this construction is that features of the inefficiency function u(z) can be recovered from the data, based on the solid microfoundation of expected utility of profit maximization but the model does not make a prediction about the distribution.
Keywords: Economics; Stochastic frontier analysis; Microfoundations; Bayesian learning; Learning-by-doing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716307858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:258:y:2017:i:3:p:1165-1170
DOI: 10.1016/j.ejor.2016.09.033
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().