Optimizing invasive species management: A mixed-integer linear programming approach
Eyyüb Y. Kıbış and
İ. Esra Büyüktahtakın
European Journal of Operational Research, 2017, vol. 259, issue 1, 308-321
Abstract:
Controlling invasive species is a highly complex problem. The intricacy of the problem stems from the nonlinearity that is inherent in biological systems, consequently impeding researchers to obtain timely and cost-efficient treatment strategies over a planning horizon. To cope with the complexity of the invasive species problem, we develop a mixed-integer programming (MIP) model that handles the problem as a full dynamic optimization model and solves it to optimality for the first time. We demonstrate the applicability of the model on a case study of sericea (Lespedeza cuneata) infestation by optimizing a spatially explicit model on a heterogeneous 10-by-10 grid landscape for a seven-year time period. We evaluate the solution quality of five different linearization methods that are used to obtain the MIP model. We also compare the model with its mixed-integer nonlinear programming (MINLP) equivalent and nonlinear programming (NLP) relaxation in terms of solution quality. The computational superiority and realism of the proposed MIP model demonstrate that our model has the potential to constitute the basis for future decision-support tools in invasive species management.
Keywords: (S) Complexity theory; Spatially explicit large-scale optimization; Mixed-integer programming (MIP); Linearization; Big-M (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716308013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:259:y:2017:i:1:p:308-321
DOI: 10.1016/j.ejor.2016.09.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().