Combinatorial Benders cuts for assembly line balancing problems with setups
Sener Akpinar,
Atabak Elmi and
Tolga Bektaş
European Journal of Operational Research, 2017, vol. 259, issue 2, 527-537
Abstract:
The classical assembly line balancing problem consists of assigning assembly work to workstations. In the presence of setup times that depend on the sequence of tasks assigned to each workstation, the problem becomes more complicated given that two interdependent problems, namely assignment and sequencing, must be solved simultaneously. The hierarchical nature of these two problems also suggest a natural decomposition of the problem. This paper adopts such an approach and describes an exact algorithm based on Benders decomposition to solve both simple and mixed-model assembly line balancing problems with setups. The algorithm is tested on a set of benchmark instances and numerically compared against a mixed-integer linear programming formulation of the problem solved using a commercial optimizer.
Keywords: Combinatorial optimization; Type-I assembly line balancing problem; Sequence-dependent setup times; Benders decomposition; Combinatorial Benders cuts (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716309079
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:259:y:2017:i:2:p:527-537
DOI: 10.1016/j.ejor.2016.11.001
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().