Using parametric classification trees for model selection with applications to financial risk management
C J Adcock and
N Meade
European Journal of Operational Research, 2017, vol. 259, issue 2, 746-765
Abstract:
We describe two parametric classification tree methods, which allow formal selection of a member of a class of generalised distributions. In the paper we consider generalised Beta distributions for non-negative random variables and the generalised skew-Student distribution for random variables distributed on the real line. We introduce a class of symmetric generalised multivariate Student distributions, members of which may also be selected using the classification trees. We present two versions of the parametric classification tree: specific to general and general to specific. We apply the classification methods to daily returns on stocks from a selection of 15 major, mid-cap and emerging markets. The results show that the majority of return distributions follow Student's t, but that a non-negligible minority follow a symmetric generalised Student distribution. We confirm a well-known stylised fact about skewness: it tends not to be persistent. By contrast, kurtosis is persistent. Using the symmetric generalised multivariate Student distribution, we present a risk management study based on efficient portfolios constructed from UKFTSE250 stocks and specifically concerned with the computation of value at risk. The case study demonstrates that the model selection procedures based on the classification trees lead to more accurate computation of VaR than those based on the normal distribution or on non-parametric approaches. The study also shows that the normal distribution may be used for VaR computations for larger portfolios when the holding period is longer.
Keywords: Finance; Classification; Persistence; Risk-management; Skew-student (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716309018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:259:y:2017:i:2:p:746-765
DOI: 10.1016/j.ejor.2016.10.051
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().