A constraint generation approach for two-machine shop problems with jobs selection
Federico Della Croce,
Christos Koulamas and
Vincent T'kindt
European Journal of Operational Research, 2017, vol. 259, issue 3, 898-905
Abstract:
We consider job selection problems in two-stage flow shops and job shops. The aim is to select the best job subset with a given cardinality to minimize the makespan. These problems are known to be ordinary NP-hard and the current state of the art algorithms can solve flow shop problems with up to 3000 jobs. We introduce a constraint generation approach to the integer linear programming (ILP) formulation of these problems according to which the constraints associated with nearly all potential critical paths are relaxed and then only the ones violated by the relaxed solution are sequentially reinstated. The proposed approach is capable of solving problems with up to 100 000 jobs.
Keywords: Scheduling; Jobs selection; Two-machine shop problems; Constraint generation approach (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716309614
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:259:y:2017:i:3:p:898-905
DOI: 10.1016/j.ejor.2016.11.036
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().