Risk-averse stochastic path detection
Ricardo Collado,
Stephan Meisel and
Laura Priekule
European Journal of Operational Research, 2017, vol. 260, issue 1, 195-211
Abstract:
We introduce the stochastic path detection problem and propose a risk-averse solution approach. The problem comprises an invader and a protector that both operate on a network with a number of possible source-destination paths. The protector aims at allocating security resources on the network such that the invader’s path is detected with high probability. The invader’s choice of path is known to the protector in terms of a probability distribution reflecting the protector’s beliefs. Errors in these beliefs induce the risk of a low detection probability. We derive a linear programming approximation and leverage the theory of coherent risk measures to consider risk-aversion with respect to errors in the protector’s beliefs. The performance of the resulting risk-averse detection policy is numerically compared with the performance of the risk-neutral policy. We show that the risk-averse policy significantly mitigates the risk of facing a low detection probability in the presence of large errors in the protector’s beliefs.
Keywords: OR in defense; Stochastic programming; Risk-averse optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716310219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:260:y:2017:i:1:p:195-211
DOI: 10.1016/j.ejor.2016.12.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().