Efficient computation of the search region in multi-objective optimization
Kerstin Dächert,
Kathrin Klamroth,
Renaud Lacour and
Daniel Vanderpooten
European Journal of Operational Research, 2017, vol. 260, issue 3, 841-855
Abstract:
Multi-objective optimization procedures usually proceed by iteratively producing new solutions. For this purpose, a key issue is to determine and efficiently update the search region, which corresponds to the part of the objective space where new nondominated points could lie. In this paper we elaborate a specific neighborhood structure among local upper bounds. Thanks to this structure, the update of the search region with respect to a new point can be performed more efficiently compared to existing approaches. Moreover, the neighborhood structure provides new insight into the search region and the location of nondominated points.
Keywords: Multi-objective optimization; Nondominated set; Search region; Local upper bounds; Scalarization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716303496
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:260:y:2017:i:3:p:841-855
DOI: 10.1016/j.ejor.2016.05.029
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().