Multi-objective branch and bound
Anthony Przybylski and
Xavier Gandibleux
European Journal of Operational Research, 2017, vol. 260, issue 3, 856-872
Abstract:
Branch and bound is a well-known generic method for computing an optimal solution of a single-objective optimization problem. Based on the idea “divide to conquer”, it consists in an implicit enumeration principle viewed as a tree search. Although the branch and bound was first suggested by Land and Doig (1960), the first complete algorithm introduced as a multi-objective branch and bound that we identified was proposed by Kiziltan and Yucaoglu (1983). Rather few multi-objective branch and bound algorithms have been proposed. This situation is not surprising as the contributions on the extensions of the components of branch and bound for multi-objective optimization are recent. For example, the concept of bound sets, which extends the classic notion of bounds, has been mentioned by Villarreal and Karwan (1981). But it was only developed for the first time in 2001 by Ehrgott and Gandibleux, and fully defined in 2007.
Keywords: Multiple objective programming; Branch and bound; Bound sets (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171730067X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:260:y:2017:i:3:p:856-872
DOI: 10.1016/j.ejor.2017.01.032
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().