An efficient bicriteria algorithm for stable robotic flow shop scheduling
Ada Che,
Vladimir Kats and
Eugene Levner
European Journal of Operational Research, 2017, vol. 260, issue 3, 964-971
Abstract:
We consider a flow shop for processing single type of parts serviced by a single robot. The robot transportation times are allowed to have small perturbations. We treat the robotic flow shop scheduling problem considering stability of its schedule where the robot route is fixed and the processing durations of parts are to be specified from given intervals. The stability radius of a schedule is defined as the largest quantity of variations in the transportation times within which the schedule can still be executed as expected. We consider the bicriteria optimization problem which consists of minimizing the cycle time and maximizing the stability radius. The objective is to handle the two criteria simultaneously, that is, to find their Pareto front. We propose a new strongly polynomial algorithm for finding the minimum cycle times for all possible values of stability radius with time complexity of O(m4), where m is the number of processing machines in the flow shop. This implies that we can find the entire Pareto front of the problem in O(m4) time.
Keywords: Scheduling; Robotic flow shop scheduling; Cyclic scheduling; Stability analysis; Parametric critical path algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717300681
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:260:y:2017:i:3:p:964-971
DOI: 10.1016/j.ejor.2017.01.033
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().