EconPapers    
Economics at your fingertips  
 

A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems

Tim Schulze, Andreas Grothey and Ken McKinnon

European Journal of Operational Research, 2017, vol. 261, issue 1, 247-259

Abstract: In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimisation models for hydro-thermal unit commitment. Several studies have modelled this as a two-stage or multi-stage stochastic mixed-integer optimisation problem. Solving such problems directly is computationally intractable for large instances, and alternative approaches are required. In this paper we use a Dantzig–Wolfe reformulation to decompose the stochastic problem by scenarios. We derive and implement a column generation method with dual stabilisation and novel primal and dual initialisation techniques. A fast, novel schedule combination heuristic is used to construct very good primal solutions, and numerical results show that knowing these from the start improves the convergence of the column generation method significantly. We test our method on a central scheduling model based on the British National Grid and illustrate that convergence to within 0.1% of optimality can be achieved quickly.

Keywords: Stochastic programming; Mixed-integer column generation; Dantzig–Wolfe decomposition; Lagrangian relaxation; Heuristics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717301108
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:261:y:2017:i:1:p:247-259

DOI: 10.1016/j.ejor.2017.02.005

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:261:y:2017:i:1:p:247-259