EconPapers    
Economics at your fingertips  
 

Automatic synthesis of constraints from examples using mixed integer linear programming

Tomasz P. Pawlak and Krzysztof Krawiec

European Journal of Operational Research, 2017, vol. 261, issue 3, 1141-1157

Abstract: Constraints form an essential part of most practical search and optimization problems, and are usually assumed to be given. However, there are plausible real-world scenarios in which constraints are not known or can be only approximated, for instance when the process in question is complex and/or noisy. To address such problems, we propose a method that synthesizes constrains from examples of feasible and infeasible solutions. The method can produce linear, quadratic and trigonometric constraints that are guaranteed to separate the feasible and infeasible regions and minimize the number of terms involved. The synthesized constraints are represented symbolically and can be used to simulate, predict or optimize the original process. We assess empirically several characteristics of the method on three benchmarks, in particular the fidelity and the complexity of the synthesized constraints with respect to the actual constraints. We also demonstrate its application to a real-world process of concrete manufacturing. Experiments demonstrate that the method is capable of producing human-readable constraints that reflect well the underlying process and can be used to simulate it.

Keywords: Artificial intelligence; Constraint acquisition; Constraint learning; Model induction; Model generation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171730156X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:261:y:2017:i:3:p:1141-1157

DOI: 10.1016/j.ejor.2017.02.034

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:261:y:2017:i:3:p:1141-1157