EconPapers    
Economics at your fingertips  
 

Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants

F. Capitanescu, A. Marvuglia, E. Benetto, A. Ahmadi and L. Tiruta-Barna

European Journal of Operational Research, 2017, vol. 262, issue 1, 322-334

Abstract: Local search (LS) is an essential module of most hybrid meta-heuristic evolutionary algorithms which are a major approach aimed to solve efficiently multi-objective optimization (MOO) problems. Furthermore, LS is specifically useful in many real-world applications where there is a need only to improve a current state of a system locally with limited computational budget and/or relying on computationally expensive process simulators. In these contexts, this paper proposes a new neighborhood-based iterative LS method, relying on first derivatives approximation and linear programming (LP), aiming to steer the search along any desired direction in the objectives space. The paper also leverages the directed local search (DS) method to constrained MOO problems. These methods are applied to the bi-objective (cost versus life cycle assessment-based environmental impact) optimization of drinking water production plants. The results obtained show that the proposed method constitutes a promising local search method which clearly outperforms the directed search approach.

Keywords: OR in environment and climate change; Multi-objective optimization; Life cycle assessment; Expensive black-box model; Local search (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717302795
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:262:y:2017:i:1:p:322-334

DOI: 10.1016/j.ejor.2017.03.057

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:322-334