An improved least squares Monte Carlo valuation method based on heteroscedasticity
Frank Fabozzi (),
Tommaso Paletta and
Radu Tunaru
European Journal of Operational Research, 2017, vol. 263, issue 2, 698-706
Abstract:
Longstaff–Schwartz’s least squares Monte Carlo method is one of the most applied numerical methods for pricing American-style derivatives. We examine the algorithms regression step, demonstrating that the OLS regression is not the best linear unbiased estimator because of heteroscedasticity. We prove the existence of heteroscedasticity for single-asset and multi-asset payoffs numerically and theoretically, and propose weighted-least squares MC valuation method to correct for it. An extensive numerical study shows that the proposed method produces significantly smaller pricing bias than the Longstaff–Schwartz method under several well-known price dynamics. An empirical pricing exercise using market data confirms the advantages of the improved method.
Keywords: Finance; American options; Heteroscedasticity; Weighted least squares; Least squares Monte Carlo pricing method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171730512X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:263:y:2017:i:2:p:698-706
DOI: 10.1016/j.ejor.2017.05.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().