EconPapers    
Economics at your fingertips  
 

Utilizing individual picker skills to improve order batching in a warehouse

Marek Matusiak, René de Koster and Jari Saarinen

European Journal of Operational Research, 2017, vol. 263, issue 3, 888-899

Abstract: Batching orders and routing order pickers is a commonly studied problem in many picker-to-parts warehouses. The impact of individual differences in picking skills on performance has received little attention. In this paper, we show that we are able to improve state-of-the-art batching and routing methods by almost 10% taking skill differences among pickers into account in minimizing the sum of total order processing time. Compared to assigning order batches to pickers only based on individual picker productivity, savings of 6% in total time are achieved. The increase in picker productivity depends on the picker category, but values of over 16% are observed for some categories. We demonstrate this for the case of a Finnish retailer. First, using time-stamped picking data, multilevel modeling is used to forecast batch execution times for individual pickers by modeling individual skills of pickers. Next, these forecasts are used to minimize total batch execution time, by assigning the right picker to the right order batch. We formulate the problem as a joint order batching and generalized assignment model, and solve it with an Adaptive Large Neighborhood Search algorithm.

Keywords: Logistics; Order picking; Analytics; Combinatorial optimization; Data driven modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717304307
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:263:y:2017:i:3:p:888-899

DOI: 10.1016/j.ejor.2017.05.002

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:263:y:2017:i:3:p:888-899