Economics at your fingertips  

Range-based Multi-Actor Multi-Criteria Analysis: A combined method of Multi-Actor Multi-Criteria Analysis and Monte Carlo simulation to support participatory decision making under uncertainty

Gino Baudry, Cathy Macharis and Thomas Vallee ()

European Journal of Operational Research, 2018, vol. 264, issue 1, 257-269

Abstract: Concerns about environmental and social effects have made Multi-Criteria Decision Making (MCDM) increasingly popular. Decision making in complex contexts often – possibly always – requires addressing an aggregation of multiple issues to meet social, economic, legal, technical, and environmental objectives. These values at stake may affect different stakeholders through distributional effects characterized by a high and heterogeneous uncertainty that no social actors can completely control or understand. On this basis, we present a new process framework that aims to support participatory decision making under uncertainty: the range-based Multi-Actor Multi-Criteria Analysis (range-based MAMCA). On the one hand, the process framework explicitly considers stakeholders’ objectives at an output level of aggregation. On the other hand, by means of a Monte Carlo analysis, the method also provides an exploratory scenario approach that enables the capture of the uncertainty, which stems from the complex context evolution. Range-based MAMCA offers a unique participatory process framework that enables us (1) to identify the alternatives pros and cons for each stakeholder group; (2) to provide probabilities about the risk of supporting mistaken, or at least ill-suited, decisions because of the uncertainty regarding to the decision-making context; (3) to take the decision-makers’ limited control of the actual policy effects over the implementation of one or several options into account. The range-based MAMCA framework is illustrated by means of our first case study that aimed to assess French stakeholders’ support for different biofuel options by 2030.

Keywords: Multiple criteria analysis; Participatory decision process; Monte Carlo analysis; Uncertainty (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.ejor.2017.06.036

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-06-13
Handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:257-269