EconPapers    
Economics at your fingertips  
 

TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study

Srinivas Soumitri Miriyala, Venkat Subramanian and Kishalay Mitra

European Journal of Operational Research, 2018, vol. 264, issue 1, 294-309

Abstract: Artificial Neural Networks (ANNs) are well known for their credible ability to capture non-linear trends in scientific data. However, the heuristic nature of estimation of parameters associated with ANNs has prevented their evolution into efficient surrogate models. Further, the dearth of optimal training size estimation algorithms for the data greedy ANNs resulted in their overfitting. Therefore, through this work, we aim to contribute a novel ANN building algorithm called TRANSFORM aimed at simultaneous and optimal estimation of ANN architecture, training size and transfer function. TRANSFORM is integrated with three standalone Sobol sampling based training size determination algorithms which incorporate the concepts of hypercube sampling and optimal space filling. TRANSFORM was used to construct ANN surrogates for a highly non-linear industrially validated continuous casting model from steel plant. Multiobjective optimization of casting model to ensure maximum productivity, maximum energy saving and minimum operational cost was performed by ANN assisted Non-dominated Sorting Genetic Algorithms (NSGA-II). The surrogate assisted optimization was found to be 13 times faster than conventional optimization, leading to its online implementation. Simple operator's rules were deciphered from the optimal solutions using Pareto front characterization and K-means clustering for optimal functioning of casting plant. Comprehensive studies on (a) computational time comparisons between proposed training size estimation algorithms and (b) predictability comparisons between constructed ANNs and state of art statistical models, Kriging Interpolators adds to the other highlights of this work. TRANSFORM takes physics based model as the only input and provides parsimonious ANNs as outputs, making it generic across all scientific domains.

Keywords: Artificial Intelligence; Multiple objective programming; Neural Networks; Online optimization; Surrogate models (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171730454X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:264:y:2018:i:1:p:294-309

DOI: 10.1016/j.ejor.2017.05.026

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:294-309