Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times
A. Sioud and
C. Gagné
European Journal of Operational Research, 2018, vol. 264, issue 1, 66-73
Abstract:
This paper presents an enhanced migrating bird optimization (MBO) algorithm and a new heuristic for solving a scheduling problem. The proposed approaches are applied to a permutation flowshop with sequence dependent setup times and the objective of minimizing the makespan. In order to augment the MBOs intensification capacity, an original problem specific heuristic is introduced. An adapted neighborhood, a tabu list, a restart mechanism and an original process for selecting a new leader also improved the MBO’s behavior. Using benchmarks from the literature, the resulting enhanced MBO (EMBO) gives state-of-the-art results when compared with other algorithms reference. A statistical analysis of the numerical experiments confirms the relative efficiency and effectiveness of both EMBO and the new heuristic.
Keywords: Scheduling; Migrating birds optimization; Permutation flowshop; Makespan; Sequence dependent setup times (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717305660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:264:y:2018:i:1:p:66-73
DOI: 10.1016/j.ejor.2017.06.027
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().