EconPapers    
Economics at your fingertips  
 

Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model

Narges Shafaei Bajestani, Ali Vahidian Kamyad, Ensieh Nasli Esfahani and Assef Zare

European Journal of Operational Research, 2018, vol. 264, issue 3, 859-869

Abstract: Due to the small sample size of data available in medical research and the levels of uncertainty and ambiguity associated with medical data, some researchers have employed fuzzy regression models to find the relationship between outcomes and explanatory variables in medical decision-making. The advantages of regression models are their ability to handle small sample sizes while fuzzy logic can model vagueness, thus making fuzzy regression a popular model among researchers. In addition, the high levels of uncertainty in medical data encourage the use of type-2 fuzzy which is capable of handling such uncertainty. The current paper proposes an interval type-2 fuzzy regression model for predicting retinopathy in diabetic patients. The results of the present work shall prevent unnecessary testing of diabetic patient. This study also aims to assist patients and the healthcare community to reduce the cost of diabetes control and treatment by optimizing the number of check-ups.

Keywords: Fuzzy sets; Type-2 fuzzy regression; Quadratic programming; Retinopathy prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717306732
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:264:y:2018:i:3:p:859-869

DOI: 10.1016/j.ejor.2017.07.046

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:264:y:2018:i:3:p:859-869