Interactive algorithms for a broad underlying family of preference functions
G. Karakaya,
M. Köksalan and
S.D. Ahipaşaoğlu
European Journal of Operational Research, 2018, vol. 265, issue 1, 248-262
Abstract:
In multi-criteria decision making approaches it is typical to consider an underlying preference function that is assumed to represent the decision maker’s preferences. In this paper we introduce a broad family of preference functions that can represent a wide variety of preference structures. We develop the necessary theory and interactive algorithms for both the general family of the preference functions and for its special cases. The algorithms guarantee to find the most preferred solution (point) of the decision maker under the assumed conditions. The convergence of the algorithms are achieved by progressively reducing the solution space based on the preference information obtained from the decision maker and the properties of the assumed underlying preference functions. We first demonstrate the algorithms on a simple bi-criteria problem with a given set of available points. We also test the performances of the algorithms on three-criteria knapsack problems and show that they work well.
Keywords: Multiple objective programming; Interactive algorithm; Search space reduction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717306550
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:265:y:2018:i:1:p:248-262
DOI: 10.1016/j.ejor.2017.07.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().