On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization
Majid Fakhar,
Mohammad Reza Mahyarinia and
Jafar Zafarani
European Journal of Operational Research, 2018, vol. 265, issue 1, 39-48
Abstract:
We introduce a new concept of generalized convexity at a given point for a family of real-valued functions and deduce nonsmooth sufficient optimality conditions for robust (weakly) efficient solutions. In addition, we present a robust duality theory and Mond–Weir type duality for an uncertain multiobjective optimization problem. Furthermore, some nonsmooth saddle-point theorems are obtained under our generalized convexity assumption. Finally we show the viability of our new concept of generalized convexity for robust optimization and portfolio optimization.
Keywords: Robustness and sensitivity analysis; Generalized convexity; Optimality condition; Nonsmooth saddle-point theorem; Robust cardinality/mean-variance model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717307154
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:265:y:2018:i:1:p:39-48
DOI: 10.1016/j.ejor.2017.08.003
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().