EconPapers    
Economics at your fingertips  
 

Estimating stochastic discount factor models with hidden regimes: Applications to commodity pricing

Marta Giampietro, Massimo Guidolin and Manuela Pedio ()

European Journal of Operational Research, 2018, vol. 265, issue 2, 685-702

Abstract: We develop new likelihood-based methods to estimate factor-based Stochastic Discount Factors (SDF) that may accommodate Hidden Markov dynamics in the factor loadings. We use these methods to investigate whether it is possible to find a SDF that jointly prices the cross-section of eight U.S. portfolios of stocks, Treasuries, corporate bonds, and commodities. In particular, we test a range of possible different specification of the SDF, including single-state and Hidden Markov models and compare their statistical and pricing performances. In addition, we assess whether and to which extent a selection of these models replicates the observed moments of the return series, and especially correlations. We report that regime-switching models clearly outperform single-state ones both in term of statistical and pricing accuracy. However, while a four-state model is selected by the information criteria, a two-state three-factor full Vector Autoregression model outperforms the others as far as the pricing accuracy is concerned.

Keywords: Finance; Commodities; Stochastic discount factor; Hidden Markov model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717306720
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Estimating Stochastic Discount Factor Models with Hidden Regimes: Applications to Commodity Pricing (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:265:y:2018:i:2:p:685-702

DOI: 10.1016/j.ejor.2017.07.045

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:265:y:2018:i:2:p:685-702