Economics at your fingertips  

Rule-based autoregressive moving average models for forecasting load on special days: A case study for France

Siddharth Arora and James W. Taylor

European Journal of Operational Research, 2018, vol. 266, issue 1, 259-268

Abstract: This paper presents a case study on short-term load forecasting for France, with emphasis on special days, such as public holidays. We investigate the generalisability to French data of a recently proposed approach, which generates forecasts for normal and special days in a coherent and unified framework, by incorporating subjective judgment in univariate statistical models using a rule-based methodology. The intraday, intraweek, and intrayear seasonality in load are accommodated using a rule-based triple seasonal adaptation of a seasonal autoregressive moving average (SARMA) model. We find that, for application to French load, the method requires an important adaption. We also adapt a recently proposed SARMA model that accommodates special day effects on an hourly basis using indicator variables. Using a rule formulated specifically for the French load, we compare the SARMA models with a range of different benchmark methods based on an evaluation of their point and density forecast accuracy. As sophisticated benchmarks, we employ the rule-based triple seasonal adaptations of Holt-Winters-Taylor (HWT) exponential smoothing and artificial neural networks (ANNs). We use nine years of half-hourly French load data, and consider lead times ranging from one half-hour up to a day ahead. The rule-based SARMA approach generated the most accurate forecasts.

Keywords: OR in Energy; Load; Short-term; Public holidays; Seasonality (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-11-10
Handle: RePEc:eee:ejores:v:266:y:2018:i:1:p:259-268