Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm
Nadir Amaioua,
Charles Audet,
Andrew R. Conn and
Sébastien Le Digabel
European Journal of Operational Research, 2018, vol. 268, issue 1, 13-24
Abstract:
The mesh adaptive direct search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: the first one applies an l1-exact penalty function, the second uses an augmented Lagrangian and the third one combines the former two, resulting in a new algorithm. It is notable that this latter approach is uniquely suitable for quadratically constrained quadratic problems. These methods are implemented within the NOMAD software package and their impact are assessed through computational experiments on 65 analytical test problems and 4 simulation-based engineering applications.
Keywords: Nonlinear programming; Derivative-free optimization; Quadratic programming; Trust-region subproblem; Mesh adaptive direct search (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717309876
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:268:y:2018:i:1:p:13-24
DOI: 10.1016/j.ejor.2017.10.058
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().