Sensitivity and covariance in stochastic complementarity problems with an application to North American natural gas markets
Sriram Sankaranarayanan,
Felipe Feijoo and
Sauleh Siddiqui ()
European Journal of Operational Research, 2018, vol. 268, issue 1, 25-36
Abstract:
We provide an efficient method to approximate the covariance between decision variables and uncertain parameters in solutions to a general class of stochastic nonlinear complementarity problems. We also develop a sensitivity metric to quantify uncertainty propagation by determining the change in the variance of the output due to a change in the variance of an input parameter. The covariance matrix of the solution variables quantifies the uncertainty in the output and pairs correlated variables and parameters. The sensitivity metric helps in identifying the parameters that cause maximum fluctuations in the output. The method developed in this paper optimizes the use of gradients and matrix multiplications which makes it particularly useful for large-scale problems. Having developed this method, we extend the deterministic version of the North American Natural Gas Model (NANGAM), to incorporate effects due to uncertainty in the parameters of the demand function, supply function, infrastructure costs, and investment costs. We then use the sensitivity metrics to identify the parameters that impact the equilibrium the most.
Keywords: Stochastic programming; Large scale optimization; Complementarity problems; Approximation methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717309967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:268:y:2018:i:1:p:25-36
DOI: 10.1016/j.ejor.2017.11.003
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().