EconPapers    
Economics at your fingertips  
 

Incomplete information imputation in limited data environments with application to disaster response

Kezban Yagci Sokat, Irina S. Dolinskaya, Karen Smilowitz and Ryan Bank

European Journal of Operational Research, 2018, vol. 269, issue 2, 466-485

Abstract: Following a major disaster, a field operations manager needs to deploy relief activities within the affected region. State-of-the-art humanitarian logistics models have been developed over the past decades to assist relief operations. However, while many models assume availability of information on infrastructure status, this is typically not the case in practice. Often, only partial information about infrastructure status is known. Utilizing the similarities in the known data via attributes, we develop a framework to impute incomplete information in limited data environments. We present an application of this framework to a past disaster, the 2010 Haiti earthquake. We build an ArcGIS model to automate the data collection and processing efforts to the extent possible. The study explores the impact of missing data, dispersion of missing data and imputation techniques used in approximating the incomplete information. Our results suggest that lower granularity yields better estimates of the unknown information above a threshold. We also develop publicly available test cases for the broader community.

Keywords: Humanitarian logistics; Incomplete information; Imputation; Limited data; 2010 Haiti earthquake (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718301310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:269:y:2018:i:2:p:466-485

DOI: 10.1016/j.ejor.2018.02.016

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:466-485