EconPapers    
Economics at your fingertips  
 

Robust optimization approaches for the equitable and effective distribution of donated food

Irem Sengul Orgut, Julie S. Ivy, Reha Uzsoy and Charlie Hale

European Journal of Operational Research, 2018, vol. 269, issue 2, 516-531

Abstract: Motivated by our eight-year partnership with a local food bank, we present two robust optimization models to support the equitable and effective distribution of donated food over the food bank's service area. Our first model addresses uncertainty in the amount of donated food counties can effectively receive and distribute, which depends on local factors such as budget and workforce that are unknown to the food bank. Assuming that the capacity of each county varies within a range, the model seeks to maximize total food distribution while enforcing a user-specified level of robustness. Our second model uses robust optimization in a nontraditional manner, treating the upper bound on the level of allowed inequity as an uncertain parameter and limiting total deviation from a perfectly equitable distribution over all counties while maximizing total food shipment. We derive structural properties of both models and develop efficient exact solution algorithms. We illustrate our models using historical data obtained from our food bank partner, summarize the policy implications of our results and examine the impact of uncertainty on outcomes and decision making.

Keywords: Humanitarian operations; Robust optimization; Uncertainty modeling; Food bank; Distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718301322
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:269:y:2018:i:2:p:516-531

DOI: 10.1016/j.ejor.2018.02.017

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:516-531