Continuous inventory control with stochastic and non-stationary Markovian demand
Walid W. Nasr and
Ibrahim J. Elshar
European Journal of Operational Research, 2018, vol. 270, issue 1, 198-217
Abstract:
Non-stationary demand is common in many industrial settings and accounting for the non-stationarity in the demand process significantly complicates the analysis of inventory policies. This work presents an efficient computational framework, which utilizes a Markovian representation, to model and solve for the stochastic and non-stationary performance measures of an inventory system. The non-stationary and stochastic characteristics of the demand process are captured by an approximate Phase-type distribution. The differential equations corresponding to the Markovian representation are presented along with an algorithmic approach to numerically solve for the non-stationary performance measures. Time-dependent (st, St) continuous replenishment policies with a fixed ordering cost are investigated over a finite time horizon. The trade-off between the computational complexity and cost effectiveness of the policies are investigated numerically under different cost and demand distribution parameters. The numerical study also investigates the accuracy of using the time-dependent Phase-type distribution to capture key descriptors of the non-stationary demand process.
Keywords: Supply chain management; Phase-type; Time-dependent; Markovian; Non-stationary demand (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718302327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:1:p:198-217
DOI: 10.1016/j.ejor.2018.03.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().