Trade-off preservation in inverse multi-objective convex optimization
Timothy C.Y. Chan and
Taewoo Lee
European Journal of Operational Research, 2018, vol. 270, issue 1, 25-39
Abstract:
Given an input solution that may not be Pareto optimal, we present a new inverse optimization methodology for multi-objective convex optimization that determines a weight vector producing a weakly Pareto optimal solution that preserves the decision maker’s trade-off intention encoded in the input solution. We introduce a notion of trade-off preservation, which we use as a measure of similarity for approximating the input solution, and show its connection with minimizing an optimality gap. We propose a linear approximation to the inverse model and a successive linear programming algorithm that balance between trade-off preservation and computational efficiency, and show that our model encompasses many of the existing inverse optimization models from the literature. We demonstrate the proposed method using clinical data from prostate cancer radiation therapy.
Keywords: Multiple objective programming; Convex programming; Inverse optimization; OR in cancer therapy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718301784
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:1:p:25-39
DOI: 10.1016/j.ejor.2018.02.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().