EconPapers    
Economics at your fingertips  
 

A linear-quadratic Gaussian approach to dynamic information acquisition

Thomas Weber and Viet Anh Nguyen

European Journal of Operational Research, 2018, vol. 270, issue 1, 260-281

Abstract: We consider optimal information acquisition for the control of linear discrete-time random systems with noisy observations and apply the findings to the problem of dynamically implementing emissions-reduction targets. The optimal policy, which is provided in closed form, depends on a single composite parameter which determines the criticality of the system. For subcritical systems, it is optimal to perform “noise leveling,” that is, to reduce the variance of the state uncertainty to an optimal level and keep it constant by a steady feed of information updates. For critical systems, the optimal policy is “noise attenuation,” that is, to substantially decrease the variance once and never acquire information thereafter. Finally for supercritical systems, information acquisition is never in the best interest of the decision maker. In each case, an explicit expression of the value function is obtained. The criticality of the system, and therefore the tradeoff between spending resources on the control or on information to improve the control, is influenced by a “policy parameter” which determines the importance a decision maker places on uncertainty reduction. The dependence of the system performance on the policy parameter is illustrated using a practical climate-control problem where a regulator imposes state-contingent taxes to probabilistically attain emissions targets.

Keywords: Dynamic emissions regulation; Information acquisition; Infinite-horizon optimal control; Linear-quadratic systems; Markov decision problems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718302121
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:1:p:260-281

DOI: 10.1016/j.ejor.2018.03.003

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:ejores:v:270:y:2018:i:1:p:260-281