Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs
M.A. Goberna,
V. Jeyakumar,
G. Li and
J. Vicente-Pérez
European Journal of Operational Research, 2018, vol. 270, issue 1, 40-50
Abstract:
This paper deals with uncertain multi-objective convex programming problems, where the data of the objective function or the constraints or both are allowed to be uncertain within specified uncertainty sets. We present sufficient conditions for the existence of highly robust weakly efficient solutions, that is, robust feasible solutions which are weakly efficient for any possible instance of the objective function within a specified uncertainty set. This is done by way of estimating the radius of highly robust weak efficiency under linearly distributed uncertainty of the objective functions. In the particular case of robust quadratic multi-objective programs, we show that these sufficient conditions can be expressed in terms of the original data of the problem, extending and improving the corresponding results in the literature for robust multi-objective linear programs under ball uncertainty.
Keywords: Robustness and sensitivity analysis; Multi-objective optimization; Convex optimization; Robust optimization; Robust efficient solutions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718302273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:1:p:40-50
DOI: 10.1016/j.ejor.2018.03.018
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().