Robust and sparse banking network estimation
Gabriele Torri,
Rosella Giacometti and
Sandra Paterlini
European Journal of Operational Research, 2018, vol. 270, issue 1, 51-65
Abstract:
Network analysis is becoming a fundamental tool in the study of systemic risk and financial contagion in the banking sector. Still, the network structure must typically be estimated from noisy and aggregated data, as micro data on the status quo banking network structure are often unavailable, or the true network is unobservable. Graphical models can help researchers to infer network structures, but they are often criticized for relying too heavily on unrealistic assumptions. They also tend to yield dense structures that are difficult to interpret. Here, we propose the tlasso model for estimating sparse banking networks. The tlasso captures the conditional dependence structure between banks through partial correlations, and estimates sparse networks in which only the relevant links are identified. The model also accounts for the non-Gaussianity of financial data and it is robust to outliers and model misspecification.
Keywords: Finance; Financial networks; Tlasso; Graphical models; CDS spreads (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718302704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:1:p:51-65
DOI: 10.1016/j.ejor.2018.03.041
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().