EconPapers    
Economics at your fingertips  
 

Auto-selection mechanism of differential evolution algorithm variants and its application

Qinqin Fan, Xuefeng Yan and Yilian Zhang

European Journal of Operational Research, 2018, vol. 270, issue 2, 636-653

Abstract: Each type of problems, such as unimodal/multimodal, linear/non-linear, convex/non-convex, and symmetrical/asymmetrical, has its own characteristics. Although various differential evolution (DE) variants have been proposed, several studies indicate that a DE variant may only exhibit high solution efficiency in solving a specific type of problems, but may perform poorly in others. Therefore, an important decision is made to automatically select a suitable DE variant among several chosen algorithms for solving a particular type of problems during the evolutionary process. To achieve this objective, an auto-selection mechanism (ASM) is introduced in this study. In the ASM, rankings attained using Friedman's test are adopted to assess the performances of DE variants. A learning strategy is employed to update the choice probabilities of DE variants, and an additional selection probability is used to alleviate the greedy selection issue. Three sets of benchmark test functions proposed in BBOB2012, IEEE CEC2005, and IEEE CEC2014 are used to evaluate the effectiveness of the ASM. The performance of the proposed algorithm is also compared with that of nine state-of-the-art DE variants and four non-DE algorithms. Statistical analysis results demonstrate that the ASM is an efficient and effective method that can take full advantages of multiple algorithms. Furthermore, the ASM is utilized to estimate the parameters of a heavy oil thermal cracking model. Experimental results indicate that the proposed algorithm outperforms the other compared algorithms in this case.

Keywords: Evolutionary computations; Differential evolution; Parameter estimation; Multi-algorithm selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717309268
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:2:p:636-653

DOI: 10.1016/j.ejor.2017.10.013

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:636-653