Characterization of the equivalence of robustification and regularization in linear and matrix regression
Dimitris Bertsimas and
Martin S. Copenhaver
European Journal of Operational Research, 2018, vol. 270, issue 3, 931-942
Abstract:
The notion of developing statistical methods in machine learning which are robust to adversarial perturbations in the underlying data has been the subject of increasing interest in recent years. A common feature of this work is that the adversarial robustification often corresponds exactly to regularization methods which appear as a loss function plus a penalty. In this paper we deepen and extend the understanding of the connection between robustification and regularization (as achieved by penalization) in regression problems. Specifically, (a)In the context of linear regression, we characterize precisely under which conditions on the model of uncertainty used and on the loss function penalties robustification and regularization are equivalent.(b)We extend the characterization of robustification and regularization to matrix regression problems (matrix completion and Principal Component Analysis).
Keywords: Convex programming; Robust optimization; Statistical regression; Penalty methods; Adversarial learning (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221717302734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:270:y:2018:i:3:p:931-942
DOI: 10.1016/j.ejor.2017.03.051
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().