A biased random-key genetic algorithm for the maximum quasi-clique problem
Bruno Q. Pinto,
Celso C. Ribeiro,
Isabel Rosseti and
Alexandre Plastino
European Journal of Operational Research, 2018, vol. 271, issue 3, 849-865
Abstract:
Given a graph G=(V,E) and a threshold γ ∈ (0, 1], the maximum cardinality quasi-clique problem consists in finding a maximum cardinality subset C* of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold γ. This problem is NP-hard, since it admits the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Computational results show that the newly proposed approaches improve upon other existing heuristics for this problem in the literature. All input data for the test instances and all detailed numerical results are available from Mendeley.
Keywords: Metaheuristics; Biased random-key genetic algorithm; Maximum quasi-clique problem; Maximum clique problem; Graph density (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718304909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:271:y:2018:i:3:p:849-865
DOI: 10.1016/j.ejor.2018.05.071
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().