Improved state space relaxation for constrained two-dimensional guillotine cutting problems
André Soares Velasco and
Eduardo Uchoa
European Journal of Operational Research, 2019, vol. 272, issue 1, 106-120
Abstract:
Christofides and Hadjiconstantinou (1995) introduced a dynamic programming state space relaxation for obtaining upper bounds for the Constrained Two-dimensional Guillotine Cutting Problem. The quality of those bounds depend on the chosen item weights, they are adjusted using a subgradient-like algorithm. This paper proposes Algorithm X, a new weight adjusting algorithm based on integer programming that provably obtains the optimal weights. In order to obtain even better upper bounds, that algorithm is generalized into Algorithm X2 for obtaining optimal two-dimensional item weights. We also present a full hybrid method, called Algorithm X2D, that computes those strong upper bounds but also provides feasible solutions obtained by: (1) exploring the suboptimal solutions hidden in the dynamic programming matrices; (2) performing a number of iterations of a GRASP based primal heuristic; and (3) executing X2H, an adaptation of Algorithm X2 to transform it into a primal heuristic. Extensive experiments with instances from the literature and on newly proposed instances, for both variants with and without item rotation, show that X2D can consistently deliver high-quality solutions and sharp upper bounds. In many cases the provided solutions are certified to be optimal.
Keywords: Cutting; Dynamic programming; Integer programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718305393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:272:y:2019:i:1:p:106-120
DOI: 10.1016/j.ejor.2018.06.016
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().