EconPapers    
Economics at your fingertips  
 

Behavioral modeling in weight loss interventions

Anil Aswani, Philip Kaminsky, Yonatan Mintz, Elena Flowers and Yoshimi Fukuoka

European Journal of Operational Research, 2019, vol. 272, issue 3, 1058-1072

Abstract: Designing systems with human agents is difficult because it often requires models that characterize agents’ responses to changes in the system’s states and inputs. An example of this scenario occurs when designing treatments for obesity. While weight loss interventions through increasing physical activity and modifying diet have found success in reducing individuals’ weight, such programs are difficult to maintain over long periods of time due to lack of patient adherence. A promising approach to increase adherence is through the personalization of treatments to each patient. In this paper, we make a contribution toward treatment personalization by developing a framework for predictive modeling using utility functions that depend upon both time-varying system states and motivational states evolving according to some modeled process corresponding to qualitative social science models of behavior change. Computing the predictive model requires solving a bilevel program, which we reformulate as a mixed-integer linear program (MILP). This reformulation provides the first (to our knowledge) formulation for Bayesian inference that uses empirical histograms as prior distributions. We study the predictive ability of our framework using a data set from a weight loss intervention, and our predictive model is validated by comparison to standard machine learning approaches. We conclude by describing how our predictive model could be used for optimization, unlike standard machine learning approaches that cannot.

Keywords: OR in health services; Predictive modeling; Weight loss; Inverse optimization; Machine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718306167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:272:y:2019:i:3:p:1058-1072

DOI: 10.1016/j.ejor.2018.07.011

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:1058-1072