Distributionally robust scheduling on parallel machines under moment uncertainty
Zhiqi Chang,
Jian-Ya Ding and
Shiji Song
European Journal of Operational Research, 2019, vol. 272, issue 3, 832-846
Abstract:
This paper investigates a distributionally robust scheduling problem on identical parallel machines, where job processing times are stochastic without any exact distributional form. Based on a distributional set specified by the support and estimated moments information, we present a min-max distributionally robust model, which minimizes the worst-case expected total flow time out of all probability distributions in this set. Our model doesn’t require exact probability distributions which are the basis for many stochastic programming models, and utilizes more information compared to the interval-based robust optimization models. Although this problem originates from the manufacturing environment, it can be applied to many other fields when the machines and jobs are endowed with different meanings. By optimizing the inner maximization subproblem, the min-max formulation is reduced to an integer second-order cone program. We propose an exact algorithm to solve this problem via exploring all the solutions that satisfy the necessary optimality conditions. Computational experiments demonstrate the high efficiency of this algorithm since problem instances with 100 jobs are optimized in a few seconds. In addition, simulation results convincingly show that the proposed distributionally robust model can hedge against the bias of estimated moments and enhance the robustness of production systems.
Keywords: Robustness and sensitivity analysis; Distributionally robust optimization; Integer second-order cone programming; Scheduling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171830612X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:272:y:2019:i:3:p:832-846
DOI: 10.1016/j.ejor.2018.07.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().