A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar
Haowei Zhang,
Junwei Xie,
Jiaang Ge,
Zhaojian Zhang and
Binfeng Zong
European Journal of Operational Research, 2019, vol. 272, issue 3, 868-878
Abstract:
A phased array radar (PAR) is used to detect new targets and update the information of those detected targets. Generally, a large number of tasks need to be performed by a single PAR in a finite time horizon. In order to utilize the limited time and the energy resources, it is necessary to provide an efficient task scheduling algorithm. However, the existing radar task scheduling algorithms can't be utilized to release the full potential of the PAR, because of those disadvantages such as full PAR task structure ignored, only good performance in one aspect considered and just heuristic or the meta-heuristic method utilized. Aiming at above issues, an optimization model for the PAR task scheduling and a hybrid adaptively genetic (HAGA) algorithm are proposed. The model considers the full PAR task structure and integrates multiple principles of task scheduling, so that multi-aspect performance can be guaranteed. The HAGA incorporates the improved GA to explore better solutions while using the heuristic task interleaving algorithm to utilize wait intervals to interleave subtasks and calculate fitness values of individuals in efficient manners. Furthermore, the efficiency and the effectiveness of the HAGA are both improved by adopting chaotic sequences for the population initialization, the elite reservation and the mixed ranking selection, as well as designing the adaptive crossover and the adaptive mutation operators. The simulation results demonstrate that the HAGA possesses merits of global exploration, faster convergence, and robustness compared with three state-of-art algorithms—adaptive GA, hybrid GA and highest priority and earliest deadline first heuristic (HPEDF) algorithm.
Keywords: Combinatorial optimization; Phased array radar; Task scheduling; Genetic algorithm; Chaos theory (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718306179
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:272:y:2019:i:3:p:868-878
DOI: 10.1016/j.ejor.2018.07.012
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().