Stochastic efficiency measures for production units with correlated data
Chiang Kao and
Shiang-Tai Liu
European Journal of Operational Research, 2019, vol. 273, issue 1, 278-287
Abstract:
While the real world is stochastic in nature, in many cases deterministic data envelopment analysis (DEA) models are used to measure the relative efficiency of a set of production units for simplicity. However, deterministic DEA models are not able to differentiate efficient units. More seriously, the decision maker will be over-confident with the presumably uncertain and probably misleading results. By applying a standard normal transformation, this paper develops a stochastic DEA model which is able to take the correlation between the input/output factors of each production unit to be evaluated into account to obtain the distribution of the stochastic efficiency. The efficiency distribution is more discriminative and informative than the single-valued efficiency, in that the probability that the stochastic efficiency of a unit is greater than that of another unit can be calculated. The case of twenty-five Taiwanese commercial banks discussed in a previous study that assumed the input/output factors to be independent is used to illustrate the characteristics of different models. The data is shown to be correlated, and the results confirm that ignoring the correlations between the input/output factors in measuring efficiency obtains misleading rankings.
Keywords: Data envelopment analysis; Stochastic data; Correlated data; Efficiency distribution (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718306738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:273:y:2019:i:1:p:278-287
DOI: 10.1016/j.ejor.2018.07.051
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().