A linear programming model for selection of sparse high-dimensional multiperiod portfolios
Chi Seng Pun and
Hoi Ying Wong
European Journal of Operational Research, 2019, vol. 273, issue 2, 754-771
Abstract:
This paper studies the mean-variance (MV) portfolio problems under static and dynamic settings, particularly for the case in which the number of assets (p) is larger than the number of observations (n). We prove that the classical plug-in estimation seriously distorts the optimal MV portfolio in the sense that the probability of the plug-in portfolio outperforming the bank deposit tends to 50% for p ≫ n and a large n. We investigate a constrained ℓ1 minimization approach to directly estimate effective parameters that appear in the optimal portfolio solution. The proposed estimator is implemented efficiently with linear programming, and the resulting portfolio is called the linear programming optimal (LPO) portfolio. We derive the consistency and the rate of convergence for LPO portfolios. The LPO procedure essentially filters out unfavorable assets based on the MV criterion, resulting in a sparse portfolio. The advantages of the LPO portfolio include its computational superiority and its applicability for dynamic settings and non-Gaussian distributions of asset returns. Simulation studies validate the theory and illustrate its finite-sample properties. Empirical studies show that the LPO portfolios outperform the equally weighted portfolio and the estimated optimal portfolios using shrinkage and other competitive estimators.
Keywords: Investment analysis; High-dimensional portfolio selection; Dynamic mean-variance portfolio; ℓ1 minimization; Sparse portfolio (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718307203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:273:y:2019:i:2:p:754-771
DOI: 10.1016/j.ejor.2018.08.025
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().