The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion
Spiridon Penev,
Pavel V. Shevchenko and
Wei Wu
European Journal of Operational Research, 2019, vol. 273, issue 2, 772-784
Abstract:
We quantify model risk of a financial portfolio whereby a multi-period mean-standard-deviation criterion is used as a selection criterion. In this work, model risk is defined as the loss due to uncertainty of the underlying distribution of the returns of the assets in the portfolio. The uncertainty is measured by the Kullback–Leibler divergence, i.e., the relative entropy. In the worst case scenario, the optimal robust strategy can be obtained in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented which allow us to compare the performance of this robust strategy with the optimal non-robust strategy. For illustration, we also quantify the model risk associated with an empirical dataset.
Keywords: Multivariate statistics; Robust portfolio allocation; Pseudo dynamic programming; Mean-standard-deviation; Kullback–Leibler divergence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718307215
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:273:y:2019:i:2:p:772-784
DOI: 10.1016/j.ejor.2018.08.026
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().