EconPapers    
Economics at your fingertips  
 

Individual-level social influence identification in social media: A learning-simulation coordinated method

Zhen-Yu Chen, Zhi-Ping Fan and Minghe Sun

European Journal of Operational Research, 2019, vol. 273, issue 3, 1005-1015

Abstract: This study develops a learning-simulation coordinated method to perform individual-level causal inference and social influence identification in social media. This method uses machine learning models to predict user adoption behavior, uses simulation to infer unobservable potential outcomes, and uses a counterfactual framework to identify individual-level social influence. The method also uses an adjusting strategy to reduce the effect of homophily and correlated unobservables. Empirical results obtained on a synthetic dataset and a semi-synthetic dataset show that the proposed method performs better on causal inference at the individual and aggregate levels than competitive methods. The computational experiment using a real-world database considers three applications, i.e., new product adoption, repeated purchase and cross selling. The empirical results show that the proposed method performs well on identifying influential members. The results reveal that the global hubs and local central nodes of the versatile friend circles have similar influences on the adoption behavior of the followers.

Keywords: Data mining; Social influence; Causal inference; Social media; Machine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718308014
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:273:y:2019:i:3:p:1005-1015

DOI: 10.1016/j.ejor.2018.09.025

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:273:y:2019:i:3:p:1005-1015