EconPapers    
Economics at your fingertips  
 

Top-κ selection with pairwise comparisons

Matthew Groves and Juergen Branke

European Journal of Operational Research, 2019, vol. 274, issue 2, 615-626

Abstract: In this work, we consider active, pairwise top-κ selection, the problem of identifying the highest quality subset of given size from a set of alternatives, based on the information collected from noisy, sequentially chosen pairwise comparisons. We adapt two well known Bayesian sequential sampling techniques, the Knowledge Gradient policy and the Optimal Computing Budget Allocation framework for the pairwise setting and compare their performance on a range of empirical tests. We demonstrate that these methods are able to match or outperform the current state of the art racing algorithm approach.

Keywords: Preference learning; Heuristics; Simulation; Subset selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718308622
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:274:y:2019:i:2:p:615-626

DOI: 10.1016/j.ejor.2018.10.011

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:274:y:2019:i:2:p:615-626