Top-κ selection with pairwise comparisons
Matthew Groves and
Juergen Branke
European Journal of Operational Research, 2019, vol. 274, issue 2, 615-626
Abstract:
In this work, we consider active, pairwise top-κ selection, the problem of identifying the highest quality subset of given size from a set of alternatives, based on the information collected from noisy, sequentially chosen pairwise comparisons. We adapt two well known Bayesian sequential sampling techniques, the Knowledge Gradient policy and the Optimal Computing Budget Allocation framework for the pairwise setting and compare their performance on a range of empirical tests. We demonstrate that these methods are able to match or outperform the current state of the art racing algorithm approach.
Keywords: Preference learning; Heuristics; Simulation; Subset selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718308622
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:274:y:2019:i:2:p:615-626
DOI: 10.1016/j.ejor.2018.10.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().